New Methoxytriterpene Dione from the Cuticle of Picea jezoensis var. jezoensis

Reiko Tanaka, Kazuhiro Tsujimoto, Yasuko In, and Shunyo Matsunaga*

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-11, Japan

Osamu Muraoka and Toshie Minematsu

Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577, Japan

Received August 30, 1996[®]

A novel pentacyclic triterpene dione was isolated from the cuticle of *Picea jezoensis* var. *jezoensis* together with the known serrat-14-ene-3,21-dione (**1**), and the structure of this compound was determined as 21α -methoxyserrat-13-ene-3,15-dione (**2**). Detailed NOESY experiments revealed that **2** has a chair form of ring A and a chairlike conformation of ring C, respectively, in CDCl₃ solution. Interestingly, single-crystal X-ray analysis indicates that in the solid state **2** has a deformed boat form of ring A, in which the 3-oxo and the 25-methyl groups are arranged in flag-pole positions, and a chairlike form of ring C.

Previously, we reported that the CH₂Cl₂ extract of the cuticle of *Picea jezoensis* (Sieb. et Zucc.) Carr. var. *jezoensis* Mayr. (Pinaceae) contained 21α -hydroxy- 3β -methoxyserrat-14-en-21-one, and 14β , 15β -epoxy- 3β -methoxyserrat-14-en-21 β -ol, together with eight known triterpenoids.^{1,2} Further work on other constituents of the cuticle has now led to the isolation of a new unsaturated triterpene dione (**2**), along with the known compound, serrat-14-en-3,21-dione (**1**).³⁻⁵ Herein, we describe the structure of **2**.

The known compound was confirmed as serrat-14ene-3,21-dione (1), which had been synthesized from serratenediol³ and later isolated from the bark of *Pinus* *luchuensis* Mayer.⁴ Physical and spectral data of **1** were in good agreement with those already reported, while the ¹³C-NMR spectrum is reported here for the first time. Detailed assignments for the ¹³C-NMR signals are given in Table 1, together with the ¹H-NMR signals.

Compound 2 was assigned the molecular formula of C₃₁H₄₈O₃ by HREIMS. The UV and IR spectra exhibited absorption bands characteristic for an α , β -unsaturated ketone and a saturated six-membered ring ketone $(\lambda_{\text{max}} 230 \text{ and } 282 \text{ nm}; \nu_{\text{max}} 1654 \text{ and } 1703 \text{ cm}^{-1})$. In the ¹H- and ¹³C-NMR spectra (Table 1), 2 exhibited signals for seven quaternary methyl groups, two methylene groups [$\delta_{\rm H}$ 2.36–2.48 (4H)] vicinal to two different carbonyl carbons [$\delta_{\rm C}$ 199.0 (s) and 217.9 (s)], and an equatorially oriented secondary methoxy group [$\delta_{\rm H}$ 2.76 (1H, dd, J = 11.8, 4.0 Hz, H-21 β) and 3.39 (3H, s), $\delta_{\rm C}$ 57.6 (q) and 87.4 (d)]. In spite of the absence of any olefin proton signals, 2 showed ¹³C-NMR signals for two sp² quaternary carbons at $\delta_{\rm C}$ 133.0 and 169.8. Thus, it became obvious that 2 must have a tetrasubstituted double bond conjugated to one of two keto groups in the molecule. In addition, the ¹H-NMR signals appeared as an AB system at rather low magnetic field at $\delta_{\rm H}$ 1.72 and 2.81 (each 1H, d, J = 14.5 Hz). These signals were attributable to the isolated 27-methylene group in the serratene skeleton.⁶ Analysis of all these data suggested that the structure of 2 was an unknown methoxyserratene dione including either the chromophore of a Δ^{13} -en-12-one or a Δ^{13} -en-15-one. The ¹H-¹H COSY, ¹H-¹³C COSY and COLOC experiments performed on **2** supported the latter structure. The COLOC data provided cross-correlations as shown in Table 1. These correlations indicated 2 to have a gross carbon framework that was presumed to be that of 21-methoxyserrat-13-ene with attached keto groups at C-3 and C-15.

Compound **2** showed nine significant fragment peaks corresponding to ions $\mathbf{a}-\mathbf{i}$ between 315 and 121 atomic mass units in its EIMS, along with the parent ion peak (see Experimental Section). Of these, ions $\mathbf{a}-\mathbf{d}$ and \mathbf{g} are characteristic for the fragmentation of a serrat-13-ene skeleton bearing a keto group at C-15. Together with the presence of an equatorial secondary methoxy proton signal, these data indicated compound **2** to be 21 α -methoxyserrat-13-ene-3,15-dione.

^{*} To whom correspondence should be addressed. Phone: 81-726-90-1084. FAX: 81-726-90-1005.

[®] Abstract published in Advance ACS Abstracts, March 1, 1997.

T 11 4			C 1	4 10	2
l'able I.	IN M R.	Data for	Compounds	\mathbf{I} and \mathbf{Z}	2

Notes

	$\delta_{ m H}$		δ_{C}			
position	1	2	1	2	COLOC data for 2 (C to H)	
1	1.49 m	1.54α m	39.5 t	39.2 t	H-5α, H-9α, Me-25	
	2.03 m	1.95β m				
2	2.46 m	2.47a m	34.1 t	33.9 t		
	2.48 m	2.48β m				
3		1	218.2 s	217.9 s	H-5α, Me-23, Me-24	
4			47.3 s	47.3 s	Me-23, Me-24	
5	1.42 dd (13.8, 2.5)	1.53α m	55.2 d	54.9 d	Me-23, Me-24, Me-25	
6	1.46 m	1.48α m	20.1 t	20.1 t		
	1.57 m	1.54β m				
7	1.26 m	1.36a td (12.5, 3.9)	44.2 t	43.0 t	H-5α, H-9α, Me-26	
	1.42 m	1.63β m				
8		1	37.0 s	34.9 s	Me-26	
9	0.93 br s	1.14α br s	62.1 d	63.8 d	H-1, H-5α, H-7, H-27, Me-25, Me-26	
10			37.8 s	37.9 s	H-11, Me-25	
11	1.12 m	1.81β m	25.5 t	20.6 t		
	1.76 m	2.07a m				
12	1.96 m	2.58α dd (14.0, 8.2)	27.7 t	29.7 t	Η-9α	
	1.22 m	2.06 β m				
13	1.81 dd (15.1, 1.3)	1	56.5 d	169.8 s	H-11, H-17β, H-27, Me-28	
14			137.9 s	133.0 s	H-12	
15	5.40 dif. t (2.9)		122.3 d	199.0 s	$H-17\beta$	
16	2.02 m	2.36α dd (12.7, 14.2)	24.5 t	34.6 t		
	2.06 m	2.49β dd (14.2, 3.5)				
17	1.67 dd (12.5, 3.4)	1.63β dd (12.7, 3.5)	51.2 d	50.1 d	Me-28, Me-29, Me-30	
18			36.2 s	40.4 s	Me-28	
19	1.43 m	1.44β m	38.4 t	34.1 t	H-17β, Me-28	
	2.17 ddd (12.9, 5.3, 3.8)	2.03a dt (14.8, 4.9)				
20	2.46 dt (14.2, 3.8)	1.59β m	34.8 t	22.3 t		
	2.76 td (14.2, 5.3)	1.99a m				
21		2.76β dd (11.8, 4.0)	216.9 s	87.4 d	Me-29, Me-30, OMe	
22			47.7 s	38.5 s	Me-29, Me-30	
23	1.08 s	1.09 s	26.9 q	26.9 q	H-5a, Me-24	
24	1.04 s	1.03 s	21.0 q	20.3 q	H-5a, Me-23	
25	0.89 s	0.83 s	15.8 q	16.2 q	Η-1, Η-5α	
26	0.87 s	0.69 s	19.3 q	18.7 q	Η-7, Η-9α, Η-27	
27	1.84 d (14.6)	1.72α d (14.5)	55.8 t	40.6 t	H-7, H-9a, Me-26	
	2.26 d (14.6)	2.81β d (14.5)				
28	0.93 s	1.04 s	13.0 q	17.1 q	H-17β, H-19	
29	1.05 s	0.86 s	24.5 q	27.6 q	H-17 β , H-21 β , Me-30	
30	1.09 s	1.00 s	24.5 g	27.6 a	H-17 β , H-21 β , Me-29	
OMe		3.39 s	I	57.6 q	H 21 β	

^a The ¹H- and ¹³C-NMR correlations were based on HETCOR spectra.

Figure 1. ORTEP diagram of 2.

Previous workers have examined the CD spectrum and single-crystal X-ray analytical data for serrat-14ene-3,21-dione (1) and reported this molecule to have a deformed boat form of ring A and a chairlike conformation of ring C.⁵ Therefore, compound **2** provided a stereochemical uncertainty that needed to be resolved, inasmuch as it contains a Δ^{13} -en-15-one grouping and the same 4,4-dimethyl-3-one system as **1** in the molecule. The single-crystal X-ray analysis furnished an ORTEP diagram for the structure of **2** (Figure 1), in which rings A and C adopt a deformed boat conformation so as to keep the 3-oxo and the 25-methyl groups on the flag-pole positions of the ring and a chairlike

form, respectively, when in the solid state. Table 2 shows the list of nonhydrogen atom fractional coordinates for 2.

On the other hand, the NOESY spectrum of **2** (Figure 2) exhibited correlations for the signals of Me-26 (with H-6 β , H-7 β , H-11 β , and H-27 β), H-7 α (with H-27 α), H-7 β (with H-27 β), Me-28 (with H-12 α , H-16 α , and H-20 α), H-21 β (with H-19 β and Me-30), Me-29 (with H-16 α and Me-28), Me-30 (with H-17 β and H-21 β), H-9 α (with H-12 α), and H-17 β (with H-21 β and Me-30). These data indicated that ring C of **2** is *trans*-fused with ring B to adopt a chairlike conformation. More significantly, cross interactions were observed for the signals of Me-

Table 2. Non-Hydrogen Atom Fractional Coordinates for Compound 2 (Esd's in parentheses)

-				
atom	X	У	Z	U(eq)
O(1)	0.1346(7)	0.6121(2)	0.3404(8)	0.105(4)
O(2)	0.0303(5)	0.8425(2)	1.2493(6)	0.088(3)
O(3)	-0.0093(4)	1.0014(1)	0.5813(7)	0.077(3)
C(1)	0.2746(5)	0.7031(2)	0.5077(8)	0.053(3)
C(2)	0.2870(7)	0.6582(2)	0.440(1)	0.071(4)
C(3)	0.1795(7)	0.6314(2)	0.463(1)	0.070(4)
C(4)	0.1275(6)	0.6293(2)	0.6507(9)	0.059(3)
C(5)	0.1573(5)	0.6704(2)	0.7532(7)	0.050(3)
C(6)	0.0732(6)	0.6766(2)	0.9103(8)	0.061(3)
C(7)	0.1116(6)	0.7140(2)	1.0193(7)	0.058(3)
C(8)	0.1134(4)	0.7554(2)	0.9160(6)	0.046(3)
C(9)	0.1950(4)	0.7487(2)	0.7519(6)	0.044(3)
C(10)	0.1657(4)	0.7097(2)	0.6342(6)	0.043(2)
C(11)	0.2147(4)	0.7885(2)	0.6422(7)	0.046(3)
C(12)	0.2819(4)	0.8237(2)	0.7386(8)	0.053(3)
C(13)	0.2012(4)	0.8512(2)	0.8526(8)	0.052(3)
C(14)	0.1522(5)	0.8331(2)	0.9969(7)	0.052(3)
C(15)	0.0773(5)	0.8585(2)	1.1191(8)	0.062(3)
C(16)	0.0632(7)	0.9033(2)	1.0785(9)	0.068(4)
C(17)	0.0637(5)	0.9116(2)	0.8821(8)	0.053(3)
C(18)	0.1846(5)	0.8963(2)	0.8017(7)	0.051(3)
C(19)	0.1725(6)	0.9018(2)	0.5978(8)	0.059(3)
C(20)	0.1390(5)	0.9459(2)	0.5492(8)	0.064(3)
C(21)	0.0203(6)	0.9596(2)	0.6293(9)	0.058(3)
C(22)	0.0181(6)	0.9563(2)	0.8300(8)	0.059(3)
C(23)	-0.0066(7)	0.6172(2)	0.644(1)	0.076(4)
C(24)	0.1967(7)	0.5926(2)	0.740(1)	0.087(5)
C(25)	0.0517(5)	0.7161(2)	0.5235(7)	0.049(3)
C(26)	-0.0152(5)	0.7698(2)	0.8762(7)	0.055(3)
C(27)	0.1710(5)	0.7888(2)	1.0422(7)	0.054(3)
C(28)	0.3000(5)	0.9190(2)	0.865(1)	0.071(4)
C(29)	0.0918(7)	0.9919(2)	0.912(1)	0.083(5)
C(30)	-0.1146(7)	0.9620(2)	0.892(1)	0.081(5)
C(31)	-0.0626(8)	1.0059(3)	0.414(1)	0.089(5)

Figure 2. NOESY correlations of compound 2.

23 (with H-5 α), Me-24 (with H-2 β), Me-25 (with H-1 β , H-2 β , and H-11 β), and H-1 α (with H-5 α). Contrary to our expectation, the above results indicated that ring A of compound 2 was trans-fused with ring B and adopts a chair form in CDCl₃, as Me-25 showed extremely clear NOESY enhancements with Me-24 and H-2 β . In four methylene proton signals appearing between δ 2.33 and 2.51, those resonating at δ 2.36 (1H, dd, J = 12.7, 14.2Hz) and 2.49 (1H, dd, J = 14.2, 3.5 Hz) were assigned to H-16 α and H-16 β , respectively, on the basis of the ¹H-¹H COSY and ¹H-¹³C COSY spectra. Similarly, the other two methylene proton resonances were observed at δ 2.47 and 2.48 (each 1H, m) and attributed to H-2 α and H-2 β , respectively. In addition, methylene signals observed at δ 2.58 (1H, dd, J = 14.0 and 8.2 Hz) and 2.06 (1H, m) were assigned, in turn, to H-12 α and H-12 β . A methine proton at δ 1.63 (1H, dd, J = 12.7, 3.5 Hz) was assigned to H-17 β . Although an attempt to prove the exact conformation by analyzing the coupling constants of the H-2 α and H-2 β signals was unsuccessful (because these signals overlapped each other along with those of H-16 β), the δ values and signal patterns of H-2 α , H-2 β , and H-17 β for **2** were closely similar when compared with those of **1**. Concerning rings A and B, **1** showed the same NOESY correlations as those of **2**, as mentioned above. Hence, **1** must also have a chair form of ring A in CDCl₃.

The above results demonstrate that in compounds **1** and **2** ring A changes its conformation according to whether it is in the solid state or in solution. Therefore, in the former state it adopts a defomed boat form, whereas it takes a chair form in the latter state.

Experimental Section

General Experimental Procedures. Melting points were determined on a Ishii hot-stage apparatus and are uncorrected. Optical rotations were measured in CHCl₃ using a JASCO DIP-140 digital polarimeter. UV spectra were recorded in EtOH on a Hitachi model 150-20 spectrophotometer. IR spectra were run as KBr disks on a Perkin-Elmer 1720X FTIR spectrophotometer. ¹Hand ¹³C-NMR spectra were obtained on a JEOL GX-500 spectrometer with standard sequences operating at 500 MHz and 125 MHz, respectively. CDCl₃ was used as solvent and TMS as internal standard. All ¹³C-NMR assignments were based on DEPTGL, 2D ¹H-¹H COSY, ¹H⁻¹³C COSY, COLOC, and NOESY experiments. EIMS and HREIMS were recorded on a Hitachi 4000H double-focusing mass spectrometer (70 eV). Column chromatography was carried out on Si gel (70-230 mesh, Merck). Fractions obtained from column chromatography were monitored by TLC (Si gel 60 HF_{254} , 0.25-mm thick) with visualization under UV (254 and 365 nm). Preparative TLC was carried out on Merck Si gel PF_{254} plates (0.5-mm thick).

Extraction and Isolation. We have already reported that repeated column chromatography of residue **F**, one of six fractions separated from the CH_2Cl_2 extract (365.1 g) of the cuticle of Picea jezoensis (Sieb. et Zucc.) Carr. var. jezoensis Mayr. (6.0 kg) by preliminary Si gel column chromatography, afforded 14β , 15β -epoxy- 3β methoxyserratan-21-one (126 mg) and its 21β -ol (107 mg) from the fractions eluted with CHCl₃ (fractions 39– 42, each fraction: 100 mL) and CHCl₃-EtOAc (20:1, fractions 63-67), respectively.² At this stage, we had also collected 105 mg of an unexamined yellow gum showing two spots on TLC from the intermediary fractions of 43-61 eluted with CHCl₃ in the above separation. Further chromatography of the gummy product on 10% AgNO₃-impregnated Si gel (10 g) using *n*-hexane $-C_6H_6$ (1:1) afforded a crystalline mass from fractions 15-21 (each fraction, 20 mL), which was purified by preparative TLC (solvent, CHCl₃-MeOH, 100:1) to afford compound 2 (13 mg). Subsequent column chromatography with the same solvent furnished a crystalline solid from fractions 29-56, which was purified by preparative TLC to give compound 1: 40 mg, mp 204–206 °C (MeOH–CHCl₃), $[\alpha]^{23}_{D}$ –3.7° (c 0.43) [lit.³ mp 208–210 °C, $[\alpha]_D$ –3.7°]; IR (KBr) ν_{max} 1714 (>C=O), 1637 and 807 (>C=CH-) cm⁻¹; ¹H- and ¹³C-NMR data, see Table 1; EIMS (70 eV) m/z [M]⁺ 438, 423, 232, 218, 205, and 203. Physical and spectral data of 1 were in good agreement with those already published for serrat-14-ene-3,21-dione.^{3,4}

21α-**Methoxyserrat-13-ene-3,15-dione (2)**: mp 317-319 °C (MeOH–CHCl₃); [α]²³_D +81.3° (*c* 0.28); HREIMS m/z 468.3602 [M]⁺ (C₃₁H₄₈O₃ requires 468.3603); UV (EtOH) λ_{max} (ϵ) 230 (4300) and 282 (7000) nm (C=O and >C=C-C=O); IR (KBr) ν_{max} 2960, 2930, 2850, 1703 (C=O), 1654 (>C=C-C=O), 1465, 1455, 1419 (-CH₂-CO), 1384 and 1363 (gem-dimethyl), 1179, 1149, 1106, 1033, 1010, 996, and 982 cm⁻¹; ¹H- and ¹³C-NMR data, see Table 1; EIMS (70 eV) m/z [M]⁺ 468 (100), [M – Me^{+}_{+} 453 (8), 439 (29), $[M - MeOH]^{+}_{+}$ 436 (4), $[M - MeOH]^{+}_{+}$ - MeOH]⁺ 421 (5), [ion **a**] 315.2320 [C₂₁H₃₁O₂]⁺ (99), [ion **b**] 299 (4), [ion **c**] 287.2004 $[C_{19}H_{27}O_2]^+$ (19), [ion **d**] 250.1927 [$C_{16}H_{26}O_2$]⁺ (100), [ion **e**] 219 (11), [ion **f**] 205 (15), [ion g] 203 (15), [ion h] 135 (20), [ion i] 121 (25).

X-ray Crystallography of Compound 2. A single crystal of 2 was obtained by recrystallization from a mixture of MeOH and CHCl₃. Crystal data: C₃₁H₄₈O₃, MW 468.72, orthorhombic, space group $P2_12_12_1$, a =11.067(2) Å, b = 31.969(2) Å, c = 7.586(1) Å, V =2683.8(5) Å³, $D_x = 1.160$ g cm⁻³, Z = 4. A total of 2459 independent reflection intensities up to $2\theta = 130^{\circ}$ were measured on a Rigaku four-circle diffractometer with graphite-monochromated CuKa radiation. A total of 1919 reflections with $F_0 > 3\sigma F_0$ were used for the structure analysis by direct method. The non-hydrogen atoms were refined anisotropically by block-diagonal least-squares on a Micro-Vax computer at the Computer Center of Osaka University of Pharmaceutical Sciences. The geometrically ideal positions of H-atoms were calculated in the final refinement with isotropic thermal parameters; their electronic densities were ascertained on a difference Fourier map. The structure of compound **2** was finally refined to R = 0.059 ($R_w = 0.085$). The

atomic scattering factors and anomalous scattering corrections were taken from International Tables for X-ray Crystallography.⁷ All the crystallographic calculations were performed by the use of a CRYSTAN GM software package.⁸ The final non-hydrogen atom fractional coordinates of 2 are listed in Table 2.9

Acknowledgments. This work was supported by the Section of Guidance and Spread, National Osaka Forestry Bureau, 1-8-75 Temmabashi, Kita-Ku, Osaka 530, Japan, for which the authors are deeply grateful. Our thanks are also due to Mrs. M. Fujitake of Osaka University of Pharmaceutical Sciences for MS measurements.

References and Notes

- (1) Tanaka, R.; Senba, H.; Minematsu, T.; Muraoka, O.; Matsunaga, S. *Phytochemistry* **1995**, *38*, 1467–1471. (2) Tanaka, R.; Ohmori, K.; Minoura, K.; Matsunaga, S. *J. Nat.*
- Prod. 1996, 59, 237-241.
- Inubushi, Y.; Tsuda, Y.; Sano, T.; Konita, T.; Suzuki, S.; Ageta, H.; Otake, Y. *Chem. Pharm. Bull.* **1967**, *15*, 1153–1168.
- (4) Cheng, Y.-S.; Cheng, E. H.-T.; Fuang, G. J.-M. J. Chin. Chem. Soc. 1975, 22, 341–347.
- (5) Tsuda, Y.; Kashiwaba, N.; Hori, T. Chem. Pharm. Bull. 1983, 31, 1073-1076.
- (6) Seto, H.; Furihata, K.; Guangyi, X.; Xiong, C.; Deji, P. Agric.
- (7) Biol. Chem. 1988, 52, 1791–1801.
 (7) Ibers, J. A.; Hamilton, W. C. (Eds.). International Tables for X-ray Crystallography; The Keynoch Press: Birmingham, UK, 1974; Vol. IV.
- (8) CRYSTAN GM, A Computer Program for the Solution and Refinement of Crystal Structures from X-ray Diffraction Data, Version 6.1. MAČ Science Co. Ltd., 1984.
- (9) Atomic coordinates, thermal parameters, bond distance and angles observed and calculated structure factors of **2** have been deposited with the Cambridge Crystallographic Data Centre and can be obtained upon request from Dr. Olga Kennard, 12 Union Road, Cambridge CB2 1EZ, UK.

NP960604+